
 HOMOTHETICITY AND HOMOGENEITY
(Demonstrating the contrary)

Homogeneity

West Germany:

Y = α0 + αLL + 
1
2 βLL2 + 

1
2 βKK2 + βLKLK2

If f(L, K) is homogeneous, then Euler's theorem1 applies -- i.e.,

r . Y  =  fLL + fKK

such that f(tL, tK)  =  tr. f(L, K)

Consider now the two marginal product functions

 fL =  αL + βLL + βLKK

and fK =  βKK + βLKL

Substituting these above shows

r . Y  =  fLL + fKK

=  αL + βLL2 + 2βLKLK + βKK2

Splitting terms and adding zero obtains:

r . Y  =  2Y - 2α0 - αLL

or

r  =  2 - 
2α0 + αLL

Y

Only if Y and 
L
Y  are constant could f(L, K) be homogeneous.  Clearly this is

unlikely; moreover, the data shows that this is not true.
France:

Y* = ΑLL* + 
1
2 ΒLL*2 + ΒLKL*K*

                                    
1Silberberg, 1978:  pp. 84-93.



gL = ΑL + ΒLL* +ΒLKK*

gK = ΒLKL*

Substituting into the Euler expression obtains:

r . Y*  =  fLL* + fKK*  =  ΑLL* + ΒLL*2 + 2ΒLKL*K*

Splitting terms and adding zero where appropriate the above expression can be
written as follows:

r . Y*  =  2 Y* - ΑLL*

or

r = 2 - ΑL L *
Y *

Only if 
L *
Y *  were constant could g(L*, K*) be homogeneous.

Homotheticity

West Germany:

Is the West German function homothetic?  Consider the following:

Y = α0 + αLL + 
1
2 βLL2 + 

1
2 βKK2 + βLKLK2

where fL = αL + βLL + βLKK

and fK = βKK + βLKL

For constant Y we obtain

- 
fL
fK

  =  δK
δL

  =  - 
αL + βLL + βLKK

βKK + βLKL

If the function is homothetic then by Euler's theorems the following must hold:

αL + βLL + βLKK

βKK + βLKL   =  
αL + t (βLL + βLKK)

t (βKK + βLKL)

This is clearly not the case.



France:

From our French production function we obtain:

Y* = ΑLL* + 
1
2 ΒLL*2 + ΒLKL*K*

where gL = ΑL + ΒLL* +ΒLKK*

and gK = ΒLKL*

If our function is homothetic then by Euler's theorems the following must hold:

- 
gL
gK

  =  
δK*
δL*   =  - 

ΑL + ΒLL* + ΒLKK*

ΒLKL*  

Clearly,

- 
ΑL + ΒLL* + ΒLKK*

ΒLKL*   =/  - 
ΑL + t (ΒLL* + ΒLKK*)

t ΒLKL*

Thus these functions are neither homogeneous, nor homothetic.



COMPARATIVE STATICS

Pre-Trade Algebra (West Germany)

Y =  α0 + αLL + 
1
2 βLL2 + 

1
2 βKK2 + βLKLK

Marginal
δY
δL  =  αL + βLL + βLKK

and
δY2

δL2 =  βL

Cross
δY
δK =  βKK + βLKL

Marginal
δY2

δL2 =  βK

Products
δY2

δL2δK2 =  βLK

Pre-Trade Algebra (France)

Y * = ALL* + 
1
2 BLL*2 + BLKL*K*

Marginal
δY *
δL*  = ΑL + ΒLL* + ΒLKK*

and
δY * 2

δL*2 = ΒL

Cross
δY *
δK* = ΒLKL*

Marginal
δY * 2

δK*2 = ΒK

Products
δY * 2

δL*2δK*2 = ΒLK



SCENARIO I

Full Employment Conditions: L
_

 = L + L*
K = K

K* = K*

Equilibrium Marginal Products:

Labor mpL = mp*L . ρY

αL + βLL + βLKK  =
 
ΑL + ΒLL* + ΒLKK* .ρY

Substituting for L* = L
_

 - L

obtains

αL + βLL + βLKK   =   








ΑL + ΒL(L
_

 - L) + ΒLKK* .ρY

Solving explicitly for L yields the post-trade equilibrium value for West
German labor, L1:

L1  =  






1

βL + ρY ΒL
 . 

















ΑL + ΒL
_

 + ΒLKK* .ρY  - αL - βLKK

Functionally this value can be shown as:

L1  = L1(L
_

, K, K*, ρY)

Substituting the new post-trade equilibrium level for West German labor into
the full employment condition obtains the post-trade French equilibrium labor

level, L*
1:

L*
1 = L

_
 - L*

1

Functionally this can be written as:

 L*
1(L

_
, K, K*, ρY)  =  L

_
 -  L*

1(L
_

, K, K*, ρY)

Substituting  L1 and L*
1 into the marginal product functions for labor obtains

the post-trade values:

mpL  = αL + βLL1 + βLKK



mp*
L  = ΑL + ΒLL*

1 + ΒLKK*

Capital Stock

The pre-trade marginal products for West German and French capital are
known to be:

 mpK =βKK + βLKL

 
and mp*K  = ΒLKL*

Substituting the post trade equilibrium values for labor obtains the post-trade
marginal products for capital:

mpK = βKK + βLKL1

mp*
K = ΒLKL*

1

SCENARIO II

Full Employment Conditions: L
_

 = L + L*

K
_

 = K + K*ρΚ

Equilibrium Marginal Products:

Labor: mpL = mp*L

αL + βLL + βLKK =
 
ΑL + ΒLL* + ΒLKK* .ρY

Substituting for L* = L
_

 - L

and K* = (K
_

 - K) 
1

ρΚ

obtains

αL + βLL + βLKK   =   








ΑL + ΒL(L
_

 - L) + ΒLK(K
_

 - K) 
1

ρΚ
 rY

Solving for L explicitly obtains L =

= 






1

βL + ρY ΒL
 
















ΑL + ΒLL
_

 + ΒLK(K
_

 - K) 
ρY
ρΚ

ρY  - αL - βLKK



Capital Stock: mpK = mp*K
 . ρY

βKK + βLKL = ΒLKL* ρY

Substituting for L* = L
_

 - L

obtains: βKK + βLKL = ΒLK(L
_

 - L) ρY
Solving explicitly for K yields:

K =
1

βK
 








ΒLK(L
_

 - L)ρY  - βLKL

Having solved for L and K explicitly the SAS procedure SYSNLIN was run to solve

simultaneously for the equilibrium post-trade values for West Germany, L2 and K2.1

From these the equilibrium post-trade values for France, L*
2 and K*

2 were obtained.

L2 = L2(L
_

, K
_

, ρΚ,ρY)

K2 = K2(L
_

, K
_

, ρΚ,ρY)

and L*
2 = L*

2(L
_

, K
_

, ρΚ,ρY) = L
_

 - L2(L
_

, K
_

, ρΚ,ρY)

K*
2 = K*

2(L
_

, K
_

, ρΚ,ρY) = K
_

 - K2(L
_

, K
_

, ρΚ,ρY)

The post-trade marginal products can be found by substituting the post trade
equilibrium values for labor and capital:

Labor mpL = αL + βLL2 + βLKK2

mp*L = ΑL + ΒLL*
2 + ΒLKK*

2

Capital Stock mpK = βKK2 + βLKL2

mp*K = ΒLKL*
2

                                    
1The common notation for Germany and France in the EEC literature are D and F for
West Germany (Deutschland) and France, respectively.



 CALCULATION OF CONVERSION FACTOR: ρ

Consider the following expression for the combined nominal capital stock of West
Germany and France:

P
87
80 K

_87
80  =  P

87
80 K

87
80 + P

87
80* K

87
80* E87

where P
87
80  = 1987 price index for West German net capital stock 

(base year 1980).

P
87
80* = 1987 price index for French net capital stock

(base year 1980).

E87  = nominal exchange rate expressed in D-Marks per 
French francs for all traded goods and services.

K
_87

80  = real net capital stock for both countries

measured in 1980 base year prices.

K
87
80  = West German real net capital stock measured in

1980 base year West German prices.

K
87
80* = French real net capital stock measured in 1980 

base year French prices.

Dividing through both sides of the initial expression by P
87
80 obtains:

K
_87

80 = K
87
80 + K

87
80* 







P

87
80*

P
87
80

 E87

Then r = 







P

87
80*

P
87
80

 E87



ELASTICITIES

Percentage changes in the increase of factor inputs and national output are easily
obtained by comparing before and after trade marginal products and national outputs.
For the home country in case two we can note:

fL(L, K, T) -  fL(L
_

, K
_

, T)

fL(L, K, T)   . 100 = %∆mpL

fk(L, K, T) -  fk(L
_

, K
_

, T)

fk(L, K, T)   . 100 = %∆mpL

Further

Y- Y(L
_

, K
_

, T)
Y   . 100 = %∆Y

Similar analysis can be applied to case 1.

In addition to the above results comparative statics can be generated for factor
input demands and national output.  By way of example consider the following:
What effect will the recent flow of immigrants to West Germany from East Germany
have on the French worker once the French/German border is opened to the free
flow of factor inputs?  Accordingly, what effect will the flow of immigrants to
Germany have on the European Community’s ability to supply national product to

world markets?1

In order to answer the first question let Y* be the national product function of
France.  further, let

mp*
L = fL(L

_
, K

_
, T)

be the marginal product of French labor before immigration, but after European
integration.  Now consider the effect of a 1% increase of the jointly employed labor
forces of the two countries in French wages.  Initially, it can be noted that:

mp*
L = gL(L

_
, K

_
, T)

                                    
1Assume in these examples that both countries represent the entire European
community.



From which obtains

εLL
_ = 











L
_

mp*
L

  .  









δmp*

L

δL
_

where εLL
_ is the labor elasticity of the French marginal product of labor.  French

labor income can be expected to rise or fall by this amount.

In answer to the second question, we might wish to know the effect of this same wave
of new immigrants on the joint production of France and Germany after European
integration. After integration it can be shown that

Y = Y(L
_

, K
_

, T)

and Y * = Y*(L
_

, K
_

, T)

Then εYL
_ = 









L
_

Y   .  






δY

δL
_

εY*L
_ = 









L
_

Y *   .  






δY *

δL
_

Then, a 1% increase in the employed work force of the European Community
(composed only of France and West Germany in this example) would result in an
overall increase in European output equal to:

εYL
_ + εY*L

_

The list of alternative questions which can be answered by this model is quite long.



FLEXIBILITY CONDITIONS

✻ A continuous function with first and second order differentiability in its arguents
can be minimally described by the following number of equations:

(n + 1)2 + (n + 1) + 1

where n = the number of factor inputs,1

(n + 1)2 = the number of relevant elements in the matrix of second 

order partials, 2

(n + 1) = the number of first order partials,
1 = the objective function (the national production 

function).

✻ Symmetry of the matrix of second order partials is an important criterium for the
integrability of factor demands.  It can be described by

(n + 1)2 - (n + 1)
2

different equations of the general form:

 
δ2y

δx1δx2
 = 

δ2y
δx2δx1

  .

where i, j = 1, 2, ... , n + 1
and i =/ j.

✻ Linear homogeneity in factor prices and national surplus (the adding-up

condition) is completely described by a single equation.3

C(w, r, π, Y, T) = 
δC
δw .w + 

δC
δr .r + 

δC
δπ .π

                                    
1Because neither π, nor T is crucial in the determination of our general equilibrium
condtions we may ignore them here and thus reduce the size of our estimable
parameter set.  Y must be included in order to accommodate change in total cost

when relative factor prices are constant..

2Because 
δC

δπ
 = 1 and 

δ2C

δπδy
 = 

δ2C

δπδr
 = 

δ2C

δπδw
 = 0 we are not conerned with differentiability

of C with respect to π.
3National surplus is a residual term which only comes into play in the absence of
linear homogeneity in the other arguments -- i.e., when constant returns to scale in
variable factor inputs are not present.



where
δC
δw = L(w, r, p Y, T),

δC
δr = K(w, r, p Y, T),

δC
δπ = 1.

✻ Zero degree homogenity in factor demands with respect to prices yields as many
equations as there are factor arguments; in this case two:

L = L(tw, tr, p Y, T)
K = K(tw, tr, p Y, T)

The condition of zero degree homogeniety does not apply to constraints.  Thus, π is
excluded from this set of condtions.

✻ Linear homogeneity of marginal cost in factor prices and output.  this constitutes
a singel equation:

δC
δY  =

δ2C
δY δw . w + 

δ2C
δY δr . r + 

δ2C
δY δπ . π

 
by Youngs' Theorem:

δC
δY  =

δ2C
δwδY  . w + 

δ2C
δrδY  . r

where
δ2C

δY δπ = 0

Subtracting the number of constraints from the total number of equations required
to obtain first and second order differentiability yields the following number of
equations:

(n + 1)2 + (n + 1) + 1  -  





(n + 1)2 - (n + 1)

2   +  n + 1 + 1  =

= 
(n + 2)(n + 1)

2

If the model is exactly identified, then the minimum number of estimable parameters
is 6, where n = 2.



 SIMPLE QUADRATIC FUNCTION
A TAYLOR SERIES EXPANSION

Consider the following expansion of the function f(L,K,T) around the point
f(Lo,Ko,To):

f(L,K,T) = f(Lo, Ko, To) +

fL(Lo, Ko, To) . (L - Lo) +

fK(Lo, Ko, To) . (K - Ko) +

fK(Lo, Ko, To) . (T - To) +

1
2 [ fLL(Lo, Ko, To) . (L - Lo)2 +

fKK(Lo, Ko, To) . (K - Ko)2 +

fTT(Lo, Ko, To) . (T - To)2 +

2 fLT(Lo, Ko, To) . (L - Lo)(T - To) +

2 fKT(Lo, Ko, To) . (K - Ko)(T - To) +

2 fLK(Lo, Ko, To) . (L - Lo)(K - Ko) ]

Expanding terms the terms in parantheses and rearranging obtains:

f(L,K,T) = ( fo - foLLo - fo
KKo - foTTo + 

1
2 f o

LLL2
o + 

1
2 f o

KKK2
o + 

1
2 f o

TTT2
o +

 f o
LTLoTo + f o

KTKoTo + f o
LKLoKo) +

( foL - f o
LLLo - f o

LTTo - f o
LKKo) L +

( fo
K - f o

KKKo - f o
KTTo - f o

LKLo) K +

( foT - f o
TTTo - f o

LTLo - f o
KTKo) T +

 
1
2 f o

LLL2 + 
1
2 f o

KKK2 + 
1
2 f o

TTT2 + f o
LTLT + f o

KTKT + f o
LKLK

which can be rewritten as

Y = αo + αLL + αKK + αTT + 
1
2 βLL2 + 

1
2 βKK2 + 

1
2 βTT2 +

γ LTLT + γ KTKT + γ LKLK



such that Y = f(L,K,T)

αo = ( fo - foLLo - fo
KKo - foTTo + 

1
2 f o

LLL2
o + 

1
2 f o

KKK2
o + 

1
2 f o

TTT2
o

 f o
LTLoTo + f o

KTKoTo + f o
LKLoKo)

αL = fo
L - f o

LLLo - f o
LTTo - f o

LKKo

αK = f o
K - f o

KKKo - f o
KTTo - f o

LKLo

αT = fo
T - f o

TTTo - f o
LTLo - f o

KTKo

βL = f o
LL

βK = f o
KK

βT = f o
TT

γ LT = f o
LT

γ KT = f o
KT

γ LK = f o
LK

Hence, a simple linear quadratic form.



FUNCTIONAL FORMS

Cholesky Transformation

The choice of an appropriate functional form is subject to a large variety of

criteria.  Important criteria include theoretical appropriateness, flexibility,

compatibility with the data, and ease of application.  In this study we will examine

two versions of the simple quadratic function:  linear and nonlinear.  Although

both of these forms are theoretically flexible, empirically flexibility can be

established for neither.  Notwithstanding, partial flexibility can be demonstrated

for the non-linear form.  Both the linear and nonlinear forms required major

respecification before reliable estimates could be obtained.  Although the CES and

Cobb-Douglas functions are much more widely used in similar analyses,20 the

quadratic function represents a Taylor series expansion and is particularly

appropriate for estimation21.  Furthermore, the quadratic function makes the

calculation of comparative statics especially easy.  Formally, the linear and

nonlinear versions of the statistical model are given below.

Linear Model:  

(11) Y =  a0 + aLL + aK + aTT +  
1
2 bLL2 +  

1
2 bKK2 +  

1
2bTT2 +

+  g
LT

 LT +  g
KT

 KT + g
LK

LK + e

                                    
20See the introduction to a collection of works edited by. T.N. Scrinivasan and John
Whalley (1986) .
21Taylor series expansions are useful approximations for small deviations around a
single point.  The wisdom of using such an approximation in the presence of a
trend variable is however questionable.  Fortunately for this study, the trend
variable is never reliable and is eventually eliminated.  Thus, the problem
disappears by default.



Nonlinear Model:  

(12) Y = a0 + a2
LL + a2

K K + aTT -  
1
2 b

2
11L2 -  

1
2 (b

2
12 + b

2
22) K2 +

+ 
1
2 bTT2 + g

LT
 L T + g

KT
 K T  -  b

11
b

12
L K  + e

Close examination of both models reveals the following similarities:

aL = a2
L bL = - b

2
11

aK = a2
K bK = - (b

2
12 + b

2
22)

gLK = - b11 b12

Moving from the linear to the nonlinear model accomplishes two tasks.  On the

one hand, it ensures concavity in output with respect to factor inputs.  On the

other ,  it facilitates the estimation of positive marginal products.  An important

requisite for flexibility in cost is negative semi-definiteness.  A function which is

concave in its arguments is negative semi-definite in these same arguments.  The

production function which forms the constraint to the cost function must be

concave in factor inputs.  The non-linear specification of our production

function ensures concavity in both cost and production.

This specification is obtained by applying the Cholesky transformation to the

submatrix of second order partials and cross partials of our linear model.  We

apply this transformation only to observed factor inputs -- labor and capital.



Let AL = 









bL gLK gLT

gKL bK gKT
gTL gTK bT

be the matrix of second order partials for our linear model.

Further let ALK = 






bL gKL

gLK bK

be a submatrix of AL with respect to labor and capital only.

The Cholesky decomposition tells us that we can rewrite ALK as:

ALK = L D L' = L C C' L' = B B'

where   L = 






L11 0

L21 L22
 ;     D = C C' ;      C = 







c11 0

0 c11

and   B = LC = 






L11c11 0

L21c11 L22c22
 = 







b11 0

b21 b22

Finally, ALK  =   B B'  =   





b

2
11 b11b12

b11b12 b
2
12+b

2
22

Multiplying by -1 we obtain

-ALK  =  





-b

2
11 -b11b12

-b11b12 -b
2
12+b

2
22

Replacing the submatrix ALK with our newly formulated submatrix

-ALK yields



ANL = 







-b
2
11 -b11b12 gLT

-b11b12 -



b

2
12+b

2
22 gKT

gTL gTK bT

      

which corresponds to the matrix of second order partial and cross-partial terms of

our nonlinear production model given by equation (12).

In order for ALK to be negative semi-definite it must be true that bL <= 0, bK <= 0 and

bLbK - g 2
LK > 0.  Substituting bL, bK and g 2

LK with the expressions - b
2
11, - b11b12

and - 



b

2
12 + b

2
22  , respectively, these conditions are satisfied.

Concavity or quasiconcavity in production ensures convexity of the input set, but

well-behaved factor demand functions also require that marginal products are

positive, else we finish with positive marginal rates of substitution and inefficient

employment of factor inputs.22  It is for this reason that we nust respecify the

coefficients of the first order terms for L and K.  Consider the marginal products

of labor and capital for our linear model (11).

mpL = 
dY
dL = aL + bL L + gLT T + gLK K

and mpK = 
dY
dK = aK + bK K + gKT T + gLK L

                                    
22In effect production does take place along the postive slope of our production
isoquants.



From our Cholesky transformation we know bL and bK can be made nonpositive.

Thus, positive marginal products of labor and capital can only be obtained when

aL + gLT T + gLK K > - bL L > 0

aK + gKT T + gLK L > - bK K > 0

The cross partial terms gLT and gKT describe marginal products of factor inputs

with respect to time.  Technological advancement suggests that these will be non-

negative.  Substitutability of factor inputs is likely to yield non-negative gLK.  So

long as our production  function is monotonic increasing raising the level of one

factor input is likely to improve the marginal productivity of the other.23   Only

the signs of the constant terms aL and aK are not immediately obvious.  In order to

insure that these are positive we redefine them as the square of themselves -

namely, a2
L = aL and a2

K = aL.  Squaring aL and aK to obtain non-negative values

for aL and aK does not guarantee that the resulting marginal products will be

positive; this can only be determined by the empirical interplay of all terms taken

together.  It does however increase the likelihood.  Notwithstanding, the

unstructured nature of this modelling procedure places important limitations on

its empirical usefulness.  Positive marginal products for individual factor inputs

can only be insured over the range of factor inputs used in the estimation24.

                                    
23In the contour plot given in graphs #9 and #10   we observe postive
monotonicity in factor inputs.
24The very notion of a quadratic production function assumes the existence of a
production maximum.  Depending upon the values of the parameter estimates, and
the level of factors employed, it is possible that marginal products will turn
negative over given ranges of factor inputs.  Fortunately, this did not occur.



Extrapolation into the future using simulated forecasting techniques, and post-

trade calculations of equilibrium input levels will likely extend beyond the range

of observed inputs and may result in negative values for these functions.

Although positive marginal products were obtained for all years, negative output

was recorded for Germany under scenario II.



MODEL MECHANICS

After we have selected an appropriate functional form and have obtained

reliable parameter estimates, we will wish to determine marginal products, the

direction of factor movements, changes in relative factor incomes and national

products.  The mechanics of these measures are discussed in this section.

Taking the first order partials of each production function yields the

following sets of marginal products:

From Y = f(L,K,T)

we obtain mpL = fL(L, K, T)

mpK = fK(L, K, T).

From Y* = g(L*,K*,T)

we obtain mp*
L = gL(L*, K*, T)

mp*
K = gK(L*, K*, T).

From these we can examine either of two trade scenarios:  one, country specific

capital stock two, country non-specific capital stock.

Scenario 1

Country specific capital stock implies immobility.  In some ways this is the

less realistic of the two scenarios; generally it is easier to transport equipment than

to transport people.  Also, country specific capital stock emphasizes capital

structures and fails thereby to model the mobile and homogeneous nature of capital

equipment.  

Geographically Germany and France share long contiguous borders.  In the

absence of rigid customs regulations French and German citizens may commute

easily across national boundaries in search of employment and monthly household

income.  This is already standard practice for some.  In order to capture both the

direction and magnitude of this movement we set the marginal physical products of

labor (the competitive real wage rate) in each country equal and allow the free flow



of labor services between countries until this expression is satisfied.  Formally, we

write1:

(5a) fL(L,K,T) = gL(L*,K,*,T) . rY

such that L
_

 = L + L*

K = K

K* = K*

where K = home country fixed capital structures and

equipment.

K* = foreign country fixed capital structures and

equipment.

rY  =
P*

Y
PY

 E = Currency conversion factor (national output).

P*
Y  = Price index for national output (Home Country).

PY  = Price index for national output (Foreign Country).

Substituting our full-employment condition into expression (5) yields the following

relationship:

(5b) fL(L, K, T) = gL((L
_

-L), K*, T) . rY

From this expression and our full employment condition we can solve for home and

foreign country equilibrium labor inputs.

L1 = L1(L
_

, K, K*, rY ,T)

and L1
*  = *L1(L

_
,K,K*,rY ,T) = L

_
 - L1(L

_
, K, K*, rY ,T)

Furthermore, we can calculate the after-trade national output for both countries by

substituting our post-trade equilibrium values for labor into our original production

functions to obtain:

Y1 = Y1(L
_

, K, K*, rY ,T) = f(L1(L
_

, K, K*, rY ,T),K,T)

                                                
1Whereas mpL = mp*L . ρY  in equilibrium, generally mpK =/ mp*

K
. ρY .



and Y1
*  = Y1

* (L
_

, K, K*, rY ,T)= g( *L1(L
_

,K,K*,rY ,T), K*,T)

Once the barrier to factor movements s removed individual nations must coordinate

their immigration and foreign investment policies vis-à-vis nonmember nations.

For example the recent immigration of East Germans to West Germany would affect

the size of the employed labor pool in both West Germany and France.  This in turn

would affect marginal physical products of both capital and labor, as well as both

countries' national products.  Similarly, French immigration policy toward North

Africans would have a direct affect on Germany's overall economic performance.

Independent action on the part of either government with respect to foreign

investment would also spill over into the economic behavior of the other country.

These effects are captured by the following sets of comparative statics.

Comparative Statics (Scenario 1):

From our equilibrium condition 5b we know:

mpL = mpL
*. rY

Substituting our equilibrium demand functions L1(L
_

, K, K*, rY ,T) and L1
* (L

_
, K, K*,

rY ,T) we obtain the following identity:

(6) fL(L1(L
_

, K, K*, rY ,T), K, T)  =_

  gL((L
_

 - L1(L
_

, K, K*, rY ,T)), K*, T) . rY

Differentiating with respect to L
_

, K and K* we obtain our comparative statics for

home and foreign country labor demand.

L
_

: From above fLL 
dL1

dL
_   =  gLL 











1 - 
dL1

dL
_  rY

we obtain
dL1

dL
_   =  

gLLrY
fLL + gLLrY

From our full-employment condition



L1
*  = L

_
 - L1(L

_
, K, K*, rY ,T)

we obtain upon differentiation:

dL1
*

dL
_   = 1 - 

dL1

dL
_  

Substituting for  
dL1

dL
_   from above we have:

dL1
*

dL
_   =  

fLL
fLL + gLLrY

K: From (6) fLL

dL1
dK

 + fLK  =  gLL 








- 
dL1
dK  rY

we obtain
dL1
dK

 = 
- fLK

fLL + gLLrY

From our full employment condition

L1
*  = L

_
 - L1(L

_
, K, K*, rY  ,T)

Differentiating and substituting yields

dL1
*

dK   =  - 
dL1
dK   =  

fLK
fLL + gLLrY

K*: From (6) fLL 
dL1
dK*

  =  








gLL 








- 
dL1
dK*

 + gLK  rY

we obtain
dL1
dK*

  =  
gLKrY

fLL + gLLrY

From our full employment condition

L1
*  = L

_
 - L1(L

_
, K, K*, rY  ,T)



Differentiating and substituting yields

dL1
*

dK*  =  - 
dL1
dK*  =  

- gLKrY
fLL + gLLrY

Substituting our demand functions into our national production functions we can

determine the effects of changes in L
_

, K and K* on national outputs.  Differentiating

Y1 = f(L1(L
_

, K, K*, rY  ,T), K, T)

Y1
*  = g((L

_
-L1(L

_
, K, K*, rY  ,T)), K, T)

with respect to L
_

, K and K* we obtain:

L
_

:
dY1

dL
_   =  fL 

dL1

dL
_    =  fL 







gLLrY

fLL + gLLrY
  =  

fL gLLrY
fLL + gLLrY

and

dY1
*

dL
_   =  gL 











1 - 
dL1

dL
_    =  gL 







fLL

fLL + gLLrY
  =  

gL fLL
fLL + gLLrY

K: Similarly

dY1
dK   = fL

dL1
dK  + fK  =  fL 







- fLK

fLL + gLLrY
 + fK

=
fK (fLL + gLLrY ) - fLfLK

fLL + gLLrY

and

dY1
*

dK
  = gL 









- 
dL1
dK

 =  
gLfLK

fLL + gLLrY



K*: and finally

dY1
dK*

  = fL 
dL1
dK*

  =  fL 
gLKrY

fLL + gLLrY
  =  

fLgLKrY
fLL + gLLrY

and

dY1
*

dK*
   = gL 









- 
dL1
dK*

 + gK =  gL 








- 
gLKrY

fLL + gLLrY
 + gK

=
gK(fLL + gLLrY ) - gLgLKrY

fLL + gLLrY

Of still further interest are the effects of national resource endowments on factor

prices and factor incomes.  Substituting equilibrium factor demands into our

marginal product functions and differentiating with respect to L
_

, K and K*, we

obtain comparative statics for equilibrium factor prices with respect to national

resources K and K* and internationally shared resources L
_

.  From equation (6) we

obtain upon differentiating with respect to L
_

, K, and K*

L
_

: d

dL
_

 
 
mpL1

 =  d

dL
_

 




mp *

L1
 =  

fLL gLLrY
fLL + gLLrY

K: d
dK

 
 
mpL1

 =  d
dK

 




mp *

L1
 =  

fLK gLLrY
fLL + gLLrY

K*: d
dK*

 
 
mpL1

 =  d
dK*

 




mp *

L1
 =  

fLL gLKrY
fLL + gLLrY

Because capital stock is specific for each country, the marginal products of capital

stock will generally be different for each country.  Thus we would also expect the

corresponding comparative statics to be different.  Differentiating our post-trade

marginal products for capital stock for each country with respect to  L
_

, K, and K* we

obtain:



Germany d

dL
_

 
 
mpK1

 =
fKLgLLrY

fLL + gLLrY

d
dK

 
 
mpK1

 =
fKLfKK - f 2

LK + fKKgLLrY
fLL + gLLrY

d
dK*

 
 
mpK1

 =
fLK gLKrY
fLL + gLLrY

France
d

dL
_ 





mp *

K1
 =

fKLgLLrY
fLL + gLLrY

d
dK 





mp *

K1
 =

fLKgLLrY
fLL + gLLrY

d
dK*

 
 
mpK1

 =
fLLgKK + 

 
gLLgKK - gLK rY

fLL + gLLrY

Scenario 2

In this scenario we allow the free flow of both labor and capital.  In order to

obtain equilibrium factor demands we set the marginal physical products of each

country equal, and subject these to our full employment constraints.  Formally,.

(7a) fL(L, K, T) = gL(L*, K*, T) . rY

(8a) fK(L, K, T) = gK(L*, K*, T) . rY

L
_

 = L + L*

K
_

 = K + K*. rK

Substituting for L* and K* from our full employment constraints the above system

simplifies to two equations in two unknowns, L and K:

(7b) fL(L,K,T) = gL(L
_

-L, (K
_

-K) 
1

rK
, T) . rY



(8b) fK(L,K,T) = gK(L
_

-L, (K
_

-K) 
1

rK
, T) . rY

Solving for L and K we obtain

L2 = L2(L
_

, K
_

, rY ,rK,T)

K2 = K2(L
_

, K
_

, rY ,rK,T)

and L*2 = L*
2(L

_
, K

_
, rY ,rK,T) = L

_
 - L2(L

_
, K

_
, rY ,rK,T)

K*2 = K*
2(L

_
,K
_

,rY ,rK,T) = 








K
_

 - K2(L
_

,K
_

,rY ,rK,T)  . 
1

rK

Notice that factor demands are no longer determined by the country specific

capital stocks, K and K*; rather they are determined by the internationally shared

capital stock, K
_

.  

Substituting back into our original production function we obtain the after-

trade levels of national output given by:

Y2 = Y2(L
_

, K
_

, rY ,rK,T)

and Y *2 = Y*2(L
_

, K
_

, rY ,rK,T)

When both factors are traded the corresponding marginal products for each country

will be equal.  This allows us to write the following set of identities:

(7c) fL (L2(L
_

, K
_

, rY ,rK, T), K2(L
_

, K
_

, rY ,rK, T), T) ｺ

gL((L
_

 - L2(L
_

, K
_

, rY ,rK, T)), (K
_

 - K2(L
_

, K
_

, rY ,rK, T)) 
1

rK
 , T) . rY

(8c) fK(L2(L
_

, K
_

, rY ,rK, T), K2(L
_

, K
_

, rY ,rK, T), T) =̀



gK((L
_

 - L2(L
_

, K
_

, rY ,rK, T)), (K
_

 - K2(L
_

, K
_

, rY ,rK, T)) 
1

rK
 , T) . rY

Comparative Statics (Scenario 2):

The comparative statics  corresponding to the above identities are given below.

Differentiating 7c and 8c with respect to L
_

 and applying Young's theorem we

obtain

fLL 
dL2

dL
_   +  fLK 

dK2

dL
_    =  gLL











1 - 
dL2

dL
_  . rY  -  gLK 

dK2

dL
_  . 

rY
rK

and fLK 
dL2

dL
_   +  fKK 

dK2

dL
_    =  gLK











1 - 
dL2

dL
_  . rY  -  gKK 

dK2

dL
_  . 

rY
rK

Expanding and rearranging terms we obtain the following system of equations:





fLL + gLLr fLK + gLK 

rY
rK

fLK + gLKr fKK + gKK 
rY
rK

  









dL2

dL
_

dK2

dL
_

 = 








gLL

gLK
 . rY

In matrix algebra we have Ax = b .  Applying Cramer's rule we obtain

(9a)
dL2

dL
_   =

|A1|

|A|  

(9b)
dK2

dL
_   =

|A2|

|A|  

where |A1| = gLLrY








fKK + gKK 
rY
rK

 - gLKrY  









fLK + gLK 
rY
rK

|A2| = gLKrY  
fLL + gLLrY  - gLLrY  

 
fLK + gLKrK



|A|  =
 
fLL + gLLrY  









fKK + gKK 
rY
rK

 -

-
 
fLK + gLKrY  









fLK + gLK 
rY
rK

.

Differentiating our identities with respect to K
_

 and applying Young's theorem we

obtain

fLK 
dL2

dK
_   +  fLK 

dK2

dK
_  = - gLL

dL2

dK
_  . rY   +  gLK 

rY
rK

  -   gLK 
dK2

dK
_

 . 
rY
rK

and

fLK 
dL2

dK
_   +  fKK 

dK2

dK
_  = - gLK

dL2

dK
_  . rY   +  gKK 

rY
rK

  -   gKK 
dK2

dK
_

 . 
rY
rK

Expanding and rearranging terms yields the following system of equations:





fLL + gLLr fLK + gLK 

rY
rK

fLK + gLKr fKK + gKK 
rY
rK

  









dL2

dK
_

dK2

dK
_

 = 








gLL

gLK
 . 

rY
rK

Once again we have a system of two equations in two unknowns which is of the

general matrix form Ax  = b .  Applying Cramer's rule we solve for x to obtain.

(10a)
dL2

dK
_   =

|A1|

|A|  

(10b)
dK2

dK
_   =

|A2|

|A|  

where |A1| = gLK 
rY
rK

 









fKK + gKK 
rY
rK

 - gKK 
rY
rK

 









fLK + gLK 
rY
rK



|A2| = gKK 
rY
rK

 
 
fLL + gLL rY  - gLK 

rY
rK

 
 
fLK + gLK rY

|A| = (fLL + gLLrY ) 









fKK + gKK 
rY
rK

 

- (fLK + gLLrY ) 









fLK + gLK 
rY
rK

Having derived our comparative statics for factor demands we can now obtain

those for national and factor incomes.  Substituting our factor demand functions

into our national output functions we obtain

Y2 = Y2(L
_

, K
_

, rY , rK, T) = f(L2(L
_

, K
_

, rY , rK, T), K2(L
_

, K
_

, rY , rK, T), T)

Y*
2 = Y*

2(L
_

, K
_

, rY , rK, T)

= g((L
_

 - L2(L
_

, K
_

, rY , rK, T)), (K
_

 - K2(L
_

, K
_

, rY , rK, T)), T)

Differentiating with respect to L
_

 and K
_

 we obtain

Germany
dY2

dL
_   = fL(L

_
, K

_
, rY , rK, T)  

dL2

dL
_   +  fK(L

_
, K

_
, rY , rK, T)  

dK2

dL
_

dY2

dK
_   = fL(L

_
, K

_
, rY , rK, T) 

dL2

dK
_   +  fK(L

_
, K

_
, rY , rK, T) 

dK2

dK
_

France
dY*

2

dL
_   = fL(L

_
, K

_
, rY , rK, T) 

dL*
2

dL
_   +  fK(L

_
, K

_
, rY , rK, T) 

dK*
2

dL
_

dY*
2

dK
_   = fL(L

_
, K

_
, rY , rK, T) 

dL*
2

dK
_   +  fK(L

_
, K

_
, rY , rK, T) 

dK*
2

dK
_



We may then substitute for 
dL*

2

dL
_ , 

dK*
2

dL
_ , 

dL*
2

dK
_ , and 

dK*
2

dK
_  from above.2   The effect of

changes in pooled resources  on factor prices is given according to the following:

Differentiating our factor price equilibrium identities 7c and 8c with respect to L
_

and K
_

 we derive the following:

d

dL
_ 





mpL2
  =

d

dL
_ 





mp *

L2
 . rY

= fLL(L
_

, K
_

, rY , rK, T) 
dL2

dL
_    +  fLK(L

_
, K

_
, rY , rK, T) 

dK2

dL
_

d

dK
_ 





mpL2
  =

d

dK
_ 





mp *

L2
 . rY

= fLK(L
_

, K
_

, rY , rK, T) 
dL2

dK
_   +  fKK(L

_
, K

_
, rY , rK, T) 

dL2

dK
_

The numerical values for these relationships are given in section V for the year

1987.

                                                
2Numerical values for these expressions have been calculated and listed in the
results.


	Appendices
	Homotheticity/Homogeneity
	Comparative statics
	Rho conversion factor
	Elasticities
	Flexibility conditions
	Quadratic function (Taylor series)
	Cholesky transformation
	Model mechanics


